
An Empirical Study on the Evolution of Test Smell
Dong Jae Kim

djaekim086@gmail.com
Concordia University
Montreal, Quebec

ABSTRACT
Test smell as analogous to code smell is a poor design choice in
the implementation of test code. Recently, the concept of test smell
has become the utmost interest of researchers and practitioners.
Surveys show that developers’ are aware of test smells and their
potential consequences in the software system. However, there is
limited empirical evidence for how developers address test smells
during software evolution. Thus, in this paper, we study 2 research
questions: (RQ1) How do test smells evolve? (RQ2) What is the
motivation for removing test smells? Our result shows that Asser-
tion Roulette, Conditional Test Logic and Unknown tests have a
high rate of churns, the feature addition and improvement moti-
vate refactoring, but test smell persists, implicating sub-optimal
practice. In our study, we hope to fill the gap between academia
and industry by providing evidence of sub-optimal practice in the
way developers address test smells, and how it may be detrimental
to the software.
ACM Reference Format:
Dong Jae Kim. 2020. An Empirical Study on the Evolution of Test Smell.
In Proceedings of ICSE ’2020: the 42nd International Conference on Software
Engineering (ICSE ’2020). ACM, New York, NY, USA, 3 pages. https://doi.
org/10.1145/1122445.1122456

1 INTRODUCTION
Software testing an essential part of software development and
plays a crucial role in software quality assurance [1]. Test cases
are useful in finding bugs early in software development and is
used to continuously validate the software quality for detecting
regressions [4, 6, 10]. However, similar to the production code,
there may also be quality issues in the test code. For example, prior
studies found that the results of some test cases may be unreliable
(e.g., flaky tests) due to bugs in test code [13].

Recently, researchers and practitioners have started to notice
design problems in the test code [3, 7, 11, 14]. Bavota et al. [3]
found that test smells are prevalent in software systems, and such
test smells may hinder program comprehension and maintenance.
Palomba et al. [8] found that some test smells may cause flaky tests
that affect the quality of the test code. However, even though a
recent survey found that developers are aware of test smells and
their potential consequences [5], it is still not clear if developers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’2020, May 23–29, 2020, Seoul, South Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

Table 1: An overview of our studied systems.

System Version LOC in Pro-
duction

LOC in Test Added Smell Removed
Smell

Kafka 2.0.0-2.1.1 94K - 117K 81K - 110K 313 146

Flink 1.4.1-1.6.1 260K - 332K 268K - 339K 580 363
Jclouds 1.2.0-1.4.0 172K 102K 125 37

Hive 2.3.4-2.3.5 207K - 888K 18K - 152K 562 211

Wicket 8.2.0-8.4.0 127K - 141K 50K - 74K 261 192

Accumulo 1.6.6-1.7.3 170K - 334K 29K - 84K 44 11

Hadoop 3.1.1-3.1.2 729K - 801K 665K - 728K 57 10

Cassandra 3.11.3-3.11.4 171K - 287K 22K - 123K 565 342

address test smells during software development, and whether
fixing the test smells would have an effect on the quality of the
production code.

In this paper, we conduct a preliminary study on the mainte-
nance of test smells. We hope to fill the gap between industry and
academia by providing evidence for how developers address test
smells and whether the sub-optimal practice of addressing test
smells may be detrimental in software. We first quantify the dif-
ferent types of test smells that were added and removed during
software evolution, and qualitatively study the removed test smells
to gain insights on what motivates developers to address test smells.
Our result shows that Assertion Roulette, Conditional Test Logic
and Unknown tests have a high rate of churns, the feature addi-
tion and improvements motivate refactoring, but test smell persists,
implicating sub-optimal practice. In the future study, we expand
our qualitative analysis on what motivates developers to remove
test smells and revisit a study on the relationship between test
smells on software quality by studying how the test smell evolution
may contribute to a better explanation for the post-release defect.
The rest of the paper is organized as follows. Section 2 discusses
experimental setup, Section 3 provides the preliminary result of
our research questions, and Section 4 discusses future work and
concludes the paper.

2 EXPERIMENTAL SETUP
Studied Systems. Table 1 shows an overview of our studied sys-
tems. We conduct our study on eight large-scale open-source Java
systems. We choose these systems because they are large in scale,
well maintained, and studied in prior test smell research [2, 5, 11].
These systems also cover various domains and are used in many
commercial settings. Since studying test code is essential for our
study, we also choose systems based on having greater than 1000
test cases. Finally, we choose release versions based on 2 criteria.
(i) We only consider systems with significant reported issues based

ICSE ’2020, May 23–29, 2020, Seoul, South Korea Dong Jae Kim

Table 2: Five Most Commonly Added (+) and Removed
Smells (-).

Unknown
Test

Assertion
Roulette

Condition
Test Logic

Duplicate
Assert

Exception
Catch

No. of
(+)

275(11%) 178(7%) 201(8%) 158(6.3%) 144(5.7%)

Assertion
Roulette

Condition
Test Logic

Magic
Number
Test

Unknown
Test

Duplicate
Assert

No. of
(-)

115(8.8%) 109(8.3%) 78(5.9%) 47(3.6%) 44(3.3%)

Table 3: Qualitative Analysis: Motivations for Removing
Test Smell

Motivation Occurrences
Deprecates/updates mock object and changes setup fixture and
test code.

(5)

Creates a helper method by extracting reusable method and
adds additional assertion statements.

(2)

Developer writes "Refactoring" in commit message, but ends
up deleting code base.

(4)

In feature addition, extract reusable method to improve testa-
bility and eases maintainbility.

(1)

Improve to a new driver test (2)

on release documentation since we are also studying test smells
evolution from maintenance activities. (ii) Since minor releases are
closer to each other, we choose releases that are 6 months apart be-
cause we believed it is sufficient to capture a series of maintenance
efforts and associated test smell evolutions.
Data preparation. We use the test smell detection tool developed
in a prior study [9]. The tool uses static analysis to detect 19 different
test smells and reported to have very high precision and recall
(0.93 and 0.98, respectively). Among the studied test smells, we
only report the top 5 most churned test smells, such as ’Assertion
Roulette’, ’Conditional Test Logic’, ’Duplicate Assert’, ’Unknown
Test’ and ’Exception Catch’. Due to space restrictions, we omit the
rest of the studied test smells, but the full list and descriptions of
test smells are discussed in prior work [9]. The final data includes
all the test files labelled with commit hash, and types of test smell
added and removed during software evolution.

3 RESEARCH QUESTIONS
RQ1: How do test smells evolve?
Approach We first extract all test files in all releases of studied
systems. Since studying on a commit-level basis is computationally
expensive, we leveraged the command “git follow” to extract com-
mits that modified the test files. For the mined commits, we run the
test smell detection tool, identifying and labelling the presence of
the 19 types of test smells. We then use the result to calculate test
smell addition or removal for all test files.
Preliminary results. In Table 1, we see that for all the studied
systems, the test smell added is twice as much as smells removed,
suggesting that developers typically introduce more test smells
during software evolution. Table 2 shows the five most commonly
added and removed test smells among the studied systems. We see
that Unknown Test (11%), Assertion Roulette (7%), Conditional Test

Logic (8%), Duplicate Assertion (6.3%) and Exception Catch (5.7%)
are the most commonly added smells and Assertion Roulette (8.8%),
Conditional Test Logic (8.3%), Magic Number Test (5.9%), Unknown
Test (3.6%)and Duplicate Asserts (3.3%) are the most commonly
removed smells. Previous works show that Assertion Roulette, Du-
plicate Assertion and Conditional Test Logic occurred the most
in software compared to other smells [9]. Similarly, we see from
Table 2 that the considered test smells also have the highest churn
rates in evolution. One of our future works is to revisit the work
by Spadini et al. [11] to study how the evolution (i.e., addition and
removal) of test smells may affect software quality.
RQ2: What is the motivation for removing test smells?
Approach.We randomly sampled 50 commits for our manual anal-
ysis. We use the bug reports and commit messages to understand
motivations for removal. To enhance our qualitative study, we also
leveraged a tool called Refactoring Aware Commit Review [12]
which is a diff visualization tool for showing the refactoring activi-
ties applied between two commits.
Preliminary results. Table 3 shows our studied motivation for
smell removal. In particular, deprecating/updating the mock object
was the most common reason. For example, the developers used
@before to reduce the number of mock instantiation to ease depre-
cation. More interestingly, some of the discussed motivations also
influenced test refactorings, which removes test smells. However,
for extract method and extract class refactorings, we always saw
the persistence of test smells in the extracted code, or the addi-
tion of new test smells when the extracted code adds new features,
showing evidence of sub-optimal practice caused by unawareness
of test smells. Some commit also contained "Refactor" in the com-
mit messages, but there was, in fact, no known refactorings. For
example, existing methods were replaced with a new method or
deleted. The rest of the studied commits were general maintenance
tasks related to feature addition and improvements. The type of test
smells removed varied, and in the future, we plan on expanding our
sample to generalize some interesting co-occurrences of removed
test smells and motivations.

4 CONCLUSION
Test smell is a poor design choice in the implementation of test
code [14]. Failure to maintain a high-quality test code increase the
diffusion of hidden bugs and incur more cost for software systems
[4, 6, 10]. Our result shows the common test smells added and re-
moved in software evolution, show that feature addition motivates
test refactoring, but test smell persists, implicating sub-optimal
practice. Our future work is to expand our qualitative analysis on
more sample size and to show that the sub-optimal practice of
smell addition or removal contributes to the high probability of
the post-release defect. In our study, we hope to fill the gap be-
tween academia and industry by providing evidence of sub-optimal
practice in the way we address test smells, and how they may be
detrimental to the software.

REFERENCES
[1] Mark Aberdour. 2007. Achieving quality in open-source software. IEEE software

24, 1 (2007), 58–64.
[2] Dimitrios Athanasiou, Ariadi Nugroho, Joost Visser, and Andy Zaidman. 2014.

Test code quality and its relation to issue handling performance. IEEE Transactions
on Software Engineering 40, 11 (2014), 1100–1125.

An Empirical Study on the Evolution of Test Smell ICSE ’2020, May 23–29, 2020, Seoul, South Korea

[3] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and Dave
Binkley. 2015. Are test smells really harmful? An empirical study. Empirical
Software Engineering 20, 4 (2015), 1052–1094.

[4] Martin Fowler and Matthew Foemmel. 2006. Continuous integration. Thought-
Works) http://www. thoughtworks. com/Continuous Integration. pdf 122 (2006),
14.

[5] Vahid Garousi and Baris Küçük. 2018. Smells in software test code: A survey of
knowledge in industry and academia. Journal of Systems and Software 138 (2018),
52–81. https://doi.org/10.1016/j.jss.2017.12.013

[6] Mary Jean Harrold. 2000. Testing: a roadmap. In Proceedings of the Conference on
the Future of Software Engineering. ACM, 61–72.

[7] Fabio Palomba and Andy Zaidman. 2017. Does Refactoring of Test Smells Induce
Fixing Flaky Tests?. In 2017 IEEE International Conference on Software Maintenance
and Evolution, ICSME 2017, Shanghai, China, September 17-22, 2017. 1–12. https:
//doi.org/10.1109/ICSME.2017.12

[8] Fabio Palomba and Andy Zaidman. 2019. The smell of fear: On the relation
between test smells and flaky tests. Empirical Software Engineering (2019), 1–40.

[9] Anthony Peruma, Khalid Almalki, Christian D. Newman, Mohamed Wiem
Mkaouer, Ali Ouni, and Fabio Palomba. 2019. On the Distribution of Test
Smells in Open Source Android Applications: An Exploratory Study. In Pro-
ceedings of the 29th Annual International Conference on Computer Science and

Software Engineering (CASCON ’19). IBM Corp., Riverton, NJ, USA, 193–202.
http://dl.acm.org/citation.cfm?id=3370272.3370293

[10] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold.
2001. Prioritizing test cases for regression testing. IEEE Transactions on software
engineering 27, 10 (2001), 929–948.

[11] Davide Spadini, Fabio Palomba, Andy Zaidman, Magiel Bruntink, and Alberto
Bacchelli. 2018. On the relation of test smells to software code quality. In 2018
IEEE International Conference on Software Maintenance and Evolution (ICSME).
IEEE, 1–12.

[12] Nikolaos Tsantalis, Matin Mansouri, Laleh M Eshkevari, Davood Mazinanian, and
Danny Dig. 2018. Accurate and efficient refactoring detection in commit history.
In Proceedings of the 40th International Conference on Software Engineering. ACM,
483–494.

[13] Arash Vahabzadeh, Amin Milani Fard, and Ali Mesbah. 2015. An empirical study
of bugs in test code. In 2015 IEEE international conference on software maintenance
and evolution (ICSME). IEEE, 101–110.

[14] Arie Van Deursen, Leon Moonen, Alex Van Den Bergh, and Gerard Kok. 2001.
Refactoring test code. In Proceedings of the 2nd international conference on extreme
programming and flexible processes in software engineering (XP2001). 92–95.

